上次一起阅读了watch和computed的源码,其实应该先看副作用effect,因为各个响应式的API里基本都用到了,等结束了reactive和readonly和ref,就一起看看effect。这次要说的是reactive和readonly,两者在实现上流程大体一致。尤其是对Map和Set的方法的代理拦截,多少有点妙。
一、reactive 和 readonly Vue3使用Proxy来替代Vue2中Object.defineProperty。
1 2 3 4 5 6 7 8 9 10 11 12 13 const target = { name : "onlyy~" , }; const proxy = new Proxy (target, { get (target, property, receiver ) { return Reflect .get (target, property, receiver); }, });
1. reactive相关类型 reactive利用Proxy来定义一个响应式对象。
Target:目标对象,包含几个标志,以及__v_raw字段,该字段表示它原本的非响应式状态的值;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 export interface Target { [ReactiveFlags .SKIP ]?: boolean ; [ReactiveFlags .IS_REACTIVE ]?: boolean ; [ReactiveFlags .IS_READONLY ]?: boolean ; [ReactiveFlags .IS_SHALLOW ]?: boolean ; [ReactiveFlags .RAW ]?: any ; } export const reactiveMap = new WeakMap <Target , any >();export const shallowReactiveMap = new WeakMap <Target , any >();export const readonlyMap = new WeakMap <Target , any >();export const shallowReadonlyMap = new WeakMap <Target , any >();const enum TargetType { INVALID = 0 , COMMON = 1 , COLLECTION = 2 , }
2. 相关全局变量与方法
ReactiveFlags:定义了各种标志对应的字符串(作为reactive对象的属性)的枚举;
reactiveMap
shallowReactiveMap
readonlyMap
shallowReadonlyMap:这几个Map分别用于存放对应API生成的响应式对象(以目标对象为key,代理对象为value),便于后续判断某个对象是否存在已创建的响应式对象;
TargetType:枚举成员的内容分别用于区分代理目标是否校验合法、普通对象、Set或Map;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 export const enum ReactiveFlags { SKIP = "__v_skip" , IS_REACTIVE = "__v_isReactive" , IS_READONLY = "__v_isReadonly" , IS_SHALLOW = "__v_isShallow" , RAW = "__v_raw" , } export const reactiveMap = new WeakMap <Target , any >();export const shallowReactiveMap = new WeakMap <Target , any >();export const readonlyMap = new WeakMap <Target , any >();export const shallowReadonlyMap = new WeakMap <Target , any >();const enum TargetType { INVALID = 0 , COMMON = 1 , COLLECTION = 2 , }
然后是两个函数:targetTypeMap用于判断各种JS类型属于TargetType中的哪种;getTargetType用于获取target对应的TargetType类型。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 function targetTypeMap (rawType: string ) { switch (rawType) { case "Object" : case "Array" : return TargetType .COMMON ; case "Map" : case "Set" : case "WeakMap" : case "WeakSet" : return TargetType .COLLECTION ; default : return TargetType .INVALID ; } } function getTargetType (value: Target ) { return value[ReactiveFlags .SKIP ] || !Object .isExtensible (value) ? TargetType .INVALID : targetTypeMap (toRawType (value)); }
3. reactive函数 reactive入参类型为object,返回值类型是UnwrapNestedRefs,对嵌套的Ref进行了解包。意味着即使reactive接收一个Ref,其返回值也不用再像Ref那样通过.value来读取值。源码的注释中也给出了示例。
reactive内部调用createReactiveObject来创建响应式对象。瞄一眼入参有五个:
target:代理目标;
false:对应createReactiveObject的isReadonly参数;
mutableHandlers:普通对象和数组的代理处理程序;
mutableCollectionHandlers:Set和Map的代理处理程序;
reactiveMap:之前定义的全局变量,收集reactive对应的依赖。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 export function reactive<T extends object >(target : T): UnwrapNestedRefs <T>;export function reactive (target: object ) { if (isReadonly (target)) { return target; } return createReactiveObject ( target, false , mutableHandlers, mutableCollectionHandlers, reactiveMap ); }
4. 造物主createReactiveObject 不论是reactive,还是shallowReactive、readonly和shallowReadonly,都是内部调用createReactiveObject来创建代理的。createReactiveObject也没什么操作,主要判断了下target的类型,再决定是直接返回target还是返回一个新建的proxy。
以下情况直接返回target:
target不是对象;
target已经是一个响应式的对象,即由createReactiveObject创建的proxy;
target类型校验不合法,例如RegExp、Date等;
当参数proxyMap对应的实参(可能为reactiveMap、shallowReactiveMap、readonlyMap或shallowReadonlyMap,分别对应ractive、shallowReactive、readonly和shallowReadonly四个API)里已经存在了target的响应式对象时,直接取出并返回该响应式对象;
否则,创建一个target的响应式对象proxy,将proxy加入到proxyMap中,然后返回该proxy。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 function createReactiveObject ( target: Target, isReadonly: boolean , baseHandlers: ProxyHandler<any >, collectionHandlers: ProxyHandler<any >, proxyMap: WeakMap <Target, any > ) { if (!isObject (target)) { if (__DEV__) { console .warn (`value cannot be made reactive: ${String (target)} ` ); } return target; } if ( target[ReactiveFlags .RAW ] && !(isReadonly && target[ReactiveFlags .IS_REACTIVE ]) ) { return target; } const existingProxy = proxyMap.get (target); if (existingProxy) { return existingProxy; } const targetType = getTargetType (target); if (targetType === TargetType .INVALID ) { return target; } const proxy = new Proxy ( target, targetType === TargetType .COLLECTION ? collectionHandlers : baseHandlers ); proxyMap.set (target, proxy); return proxy; }
我们知道,代理的重点其实在与代理的处理程序,createReactiveObject根据普通对象和数组类型、Set和Map类型来区分baseHandlers和collectionHandlers。
5. shallowReactive、readonly和shallowReadonly 事实上,ractive、shallowReactive、readonly和shallowReadonly这几个函数形式上基本一致,都是通过createReactiveObject来创建响应式对象,存储在对应的proxyMap里,但是对应的baseHandlers和collectionHandlers有区别。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 export function shallowReactive<T extends object >( target : T ): ShallowReactive <T> { return createReactiveObject ( target, false , shallowReactiveHandlers, shallowCollectionHandlers, shallowReactiveMap ); } export function readonly <T extends object >( target : T ): DeepReadonly <UnwrapNestedRefs <T>> { return createReactiveObject ( target, true , readonlyHandlers, readonlyCollectionHandlers, readonlyMap ); } export function shallowReadonly<T extends object >(target : T): Readonly <T> { return createReactiveObject ( target, true , shallowReadonlyHandlers, shallowReadonlyCollectionHandlers, shallowReadonlyMap ); }
事实上,ractive、shallowReactive、readonly和shallowReadonly这几个函数形式上基本一致,都是通过createReactiveObject来创建响应式对象,存储在对应的proxyMap里,但是对应的baseHandlers和collectionHandlers有区别。那么我们就知道了,其实重点都在各种handlers里。
二、对应的 Handlers baseHandlers用于普通对象和数组的代理,collectionHandlers用于Set、Map等的代理。对应ractive、shallowReactive、readonly和shallowReadonly四个API,每一个都有自己的baseHandlers和collectionHandlers。
1. baseHandlers 在packages/reactivity/src/baseHandlers.ts文件中。分别导出了这 4 个API对应的baseHandlers。
1.1 reactive reactive的baseHandlers中有 5 个代理程序。
1 2 3 4 5 6 7 8 export const mutableHandlers : ProxyHandler <object > = { get, set, deleteProperty, has, ownKeys, };
在拦截过程中,在get、has和ownKey这几个访问程序中进行依赖捕获(track),在set和deleteProperty这俩用于更改的程序中触发更新(trigger) 。
get和set分别由函数createGetter和createSetter创建,这俩函数根据入参的不同,返回不同的get和set,readonly等API的baseHandlers中的get和set也大都源于此,除了两种readonly中用于告警的set。
(1) get createGetter两个入参:isReadonly和isShallow,两两组合正好对应四个API。
shallow:为true时不会进入递归环节,因此是浅层的处理;
isReadonly:在createGetter中影响proxyMap的选择和递归时API的选择,它主要发挥作用是在set中。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 function createGetter (isReadonly = false , shallow = false ) { return function get (target: Target, key: string | symbol , receiver: object ) { if (key === ReactiveFlags .IS_REACTIVE ) { return !isReadonly; } else if (key === ReactiveFlags .IS_READONLY ) { return isReadonly; } else if (key === ReactiveFlags .IS_SHALLOW ) { return shallow; } else if ( key === ReactiveFlags .RAW && receiver === (isReadonly ? shallow ? shallowReadonlyMap : readonlyMap : shallow ? shallowReactiveMap : reactiveMap ).get (target) ) { return target; } const targetIsArray = isArray (target); if (!isReadonly && targetIsArray && hasOwn (arrayInstrumentations, key)) { return Reflect .get (arrayInstrumentations, key, receiver); } const res = Reflect .get (target, key, receiver); if (isSymbol (key) ? builtInSymbols.has (key) : isNonTrackableKeys (key)) { return res; } if (!isReadonly) { track (target, TrackOpTypes .GET , key); } if (shallow) { return res; } if (isRef (res)) { return targetIsArray && isIntegerKey (key) ? res : res.value ; } if (isObject (res)) { return isReadonly ? readonly (res) : reactive (res); } return res; }; }
(2) set 对于reactive,可以说最主要的任务就是在set中触发更新,set包括 新增 和 修改 属性值。如果当前的key对应的值是一个Ref,且其它条件满足时,则触发更新的操作是在Ref的内部。这些在后续讲解Ref的时候会提到。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 function createSetter (shallow = false ) { return function set ( target: object , key: string | symbol , value: unknown , receiver: object ): boolean { let oldValue = (target as any )[key]; if (isReadonly (oldValue) && isRef (oldValue) && !isRef (value)) { return false ; } if (!shallow) { if (!isShallow (value) && !isReadonly (value)) { oldValue = toRaw (oldValue); value = toRaw (value); } if (!isArray (target) && isRef (oldValue) && !isRef (value)) { oldValue.value = value; return true ; } } else { } const hadKey = isArray (target) && isIntegerKey (key) ? Number (key) < target.length : hasOwn (target, key); const result = Reflect .set (target, key, value, receiver); if (target === toRaw (receiver)) { if (!hadKey) { trigger (target, TriggerOpTypes .ADD , key, value); } else if (hasChanged (value, oldValue)) { trigger (target, TriggerOpTypes .SET , key, value, oldValue); } } return result; }; }
(3) deleteProperty 删除操作的代理程序,和set一样,deleteProperty拦截delete和Reflect.deleteProperty()操作,它也能触发更新。
1 2 3 4 5 6 7 8 9 10 function deleteProperty (target: object , key: string | symbol ): boolean { const hadKey = hasOwn (target, key); const oldValue = (target as any )[key]; const result = Reflect .deleteProperty (target, key); if (result && hadKey) { trigger (target, TriggerOpTypes .DELETE , key, undefined , oldValue); } return result; }
(4) has has用于判断target中是否有当前的key,拦截a in obj、with(obj){(a)}、Reflect.has等操作,属于访问程序,在其中进行has操作的依赖收集。
1 2 3 4 5 6 7 function has (target: object , key: string | symbol ): boolean { const result = Reflect .has (target, key); if (!isSymbol (key) || !builtInSymbols.has (key)) { track (target, TrackOpTypes .HAS , key); } return result; }
(5) ownKeys 用于获取target所有自身拥有的key,拦截Object.getOwnPropertyNames、Object.getOwnPropertySymbols、Object.keys、Reflect.ownKeys,属于访问程序,在其中进行迭代的依赖收集。
1 2 3 4 function ownKeys (target: object ): (string | symbol )[] { track (target, TrackOpTypes .ITERATE , isArray (target) ? "length" : ITERATE_KEY ); return Reflect .ownKeys (target); }
现在我们算是都弄明白了,对于普通对象和数组,reactive创建proxy,通过get、set、deleteProperty、has、ownKeys五个代理处理程序,来拦截其属性访问操作,在其中进行依赖收集,拦截其增删改操作,其中触发更新。
1.2 readonly readonly的代理处理程序只有三个:
get:由createGetter(true)创建,还记得我们上面讲到的createSetter吗?
set
deleteProperty:这两个代理处理程序用于告警,毕竟readonly不可修改。
毕加思索一下createGetter(true),传入的readonly=true,使得get中不会进行track操作来收集依赖,因而不具有响应性。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 const readonlyGet = createGetter (true );export const readonlyHandlers : ProxyHandler <object > = { get : readonlyGet, set (target, key ) { if (__DEV__) { warn ( `Set operation on key "${String (key)} " failed: target is readonly.` , target ); } return true ; }, deleteProperty (target, key ) { if (__DEV__) { warn ( `Delete operation on key "${String (key)} " failed: target is readonly.` , target ); } return true ; }, };
1.3 shallowReactive shallowReactive移植了reactive的baseHandlers,并且更新了get和set。具体实现也可以回顾上面说到的createGetter和createSetter。
回过头来看看createGetter(false, true),isReadonly = false,则在get中,可以进行track依赖收集;shallow = true,则在get中不会对顶层的Ref进行解包,也不会进行递归操作。
而在createSetter(true)中,参数shallow几乎只影响是否要解出原本的raw值。如果新值value不是浅层且不是只读的,则需要解出它的原本raw值,之后才能进行赋值操作,否则我们的shallowRef将不再是浅层的了。
1 2 3 4 5 6 7 8 9 10 11 const shallowGet = createGetter (false , true );const shallowSet = createSetter (true );export const shallowReactiveHandlers = extend ( {}, mutableHandlers, { get : shallowGet, set : shallowSet, } );
1.4 shallowReadonly 移植了readonly的baseHandlers,更新了其中的get,这个get也试试由createGetter创建。我们知道,readonly的baseHandlers里,除了get,另外俩都是用来拦截修改操作并告警的。
回顾一下createGetter,当isReadonly===true时,不会进行track操作来收集依赖;shallow===true时,不会对Ref进行解包,也不会走到递归环节,即是浅层的readonly。
1 2 3 4 5 6 7 8 9 10 11 12 const shallowReadonlyGet = createGetter (true , true );export const shallowReadonlyHandlers = extend ( {}, readonlyHandlers, { get : shallowReadonlyGet, } );
2. cellectionHandlers 对于Set和Map较为复杂的数据结构,他们有自己的方法,因此代理程序会有些差别。基本都是拦截它们原本的方法,然后进行track或trigger。可以看到这几个handlers中,都只有由createInstrumentationGetter创建的get。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 export const mutableCollectionHandlers : ProxyHandler <CollectionTypes > = { get : createInstrumentationGetter (false , false ), }; export const shallowCollectionHandlers : ProxyHandler <CollectionTypes > = { get : createInstrumentationGetter (false , true ), }; export const readonlyCollectionHandlers : ProxyHandler <CollectionTypes > = { get : createInstrumentationGetter (true , false ), }; export const shallowReadonlyCollectionHandlers : ProxyHandler <CollectionTypes > = { get : createInstrumentationGetter (true , true ), };
1.1 createInstrumentationGetter 因为是代理Set和Map,在拦截它们的实例方法之前,对实例的访问,即get,这个get并非Map或Set实例的get方法,而是表示对实例的访问操作。例如:const map = new Map([['name', 'cc']]); map.set('age', 18);。这里map.set()首先就是访问map的set方法,对应的key就是字符串'set',而这一步就会被代理的get程序拦截,而真正的对方法的拦截,都在相应的instrumentations里预设好了。拦截了之后,如果key在instrumentations里存在,返回预设的方法,在其中进行track和trigger操作,否则是其它属性/方法,直接返回即可,不会进行track和trigger。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 const [ mutableInstrumentations, readonlyInstrumentations, shallowInstrumentations, shallowReadonlyInstrumentations, ] = createInstrumentations (); function createInstrumentationGetter (isReadonly: boolean , shallow: boolean ) { const instrumentations = shallow ? isReadonly ? shallowReadonlyInstrumentations : shallowInstrumentations : isReadonly ? readonlyInstrumentations : mutableInstrumentations; return ( target: CollectionTypes, key: string | symbol , receiver: CollectionTypes ) => { if (key === ReactiveFlags .IS_REACTIVE ) { return !isReadonly; } else if (key === ReactiveFlags .IS_READONLY ) { return isReadonly; } else if (key === ReactiveFlags .RAW ) { return target; } return Reflect .get ( hasOwn (instrumentations, key) && key in target ? instrumentations : target, key, receiver ); }; }
1.2 instrumentations 和baseHandlers相比,Proxy无法直接拦截Map和Set的方法的调用,而是通过get程序来拦截,再判断key是否为执行增删改查的方法,从而判断是否进行依赖收集或更新。因此,就需要先预设好,哪些key作为方法名时可以触发track和trigger。其实也就是Map和Set的那些实例方法和迭代器方法。而各种Instrumentations,就是这些预设的方法,track和trigger操作都在其中。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 function createInstrumentations ( ) { const mutableInstrumentations : Record <string , Function > = { get (this : MapTypes, key: unknown ) { return get (this , key); }, get size () { return size (this as unknown as IterableCollections ); }, has, add, set, delete : deleteEntry, clear, forEach : createForEach (false , false ), }; const shallowInstrumentations : Record <string , Function > = { get (this : MapTypes, key: unknown ) { return get (this , key, false , true ); }, get size () { return size (this as unknown as IterableCollections ); }, has, add, set, delete : deleteEntry, clear, forEach : createForEach (false , true ), }; const readonlyInstrumentations : Record <string , Function > = { get (this : MapTypes, key: unknown ) { return get (this , key, true ); }, get size () { return size (this as unknown as IterableCollections , true ); }, has (this : MapTypes, key: unknown ) { return has.call (this , key, true ); }, add : createReadonlyMethod (TriggerOpTypes .ADD ), set : createReadonlyMethod (TriggerOpTypes .SET ), delete : createReadonlyMethod (TriggerOpTypes .DELETE ), clear : createReadonlyMethod (TriggerOpTypes .CLEAR ), forEach : createForEach (true , false ), }; const shallowReadonlyInstrumentations : Record <string , Function > = { get (this : MapTypes, key: unknown ) { return get (this , key, true , true ); }, get size () { return size (this as unknown as IterableCollections , true ); }, has (this : MapTypes, key: unknown ) { return has.call (this , key, true ); }, add : createReadonlyMethod (TriggerOpTypes .ADD ), set : createReadonlyMethod (TriggerOpTypes .SET ), delete : createReadonlyMethod (TriggerOpTypes .DELETE ), clear : createReadonlyMethod (TriggerOpTypes .CLEAR ), forEach : createForEach (true , true ), }; const iteratorMethods = ["keys" , "values" , "entries" , Symbol .iterator ]; iteratorMethods.forEach ((method ) => { mutableInstrumentations[method as string ] = createIterableMethod ( method, false , false ); readonlyInstrumentations[method as string ] = createIterableMethod ( method, true , false ); shallowInstrumentations[method as string ] = createIterableMethod ( method, false , true ); shallowReadonlyInstrumentations[method as string ] = createIterableMethod ( method, true , true ); }); return [ mutableInstrumentations, readonlyInstrumentations, shallowInstrumentations, shallowReadonlyInstrumentations, ]; }
函数createInstrumentations分为两部分,前部分是利用已有的get、set、add、has、clear等等来得到各个instrumentations,后部分是对各个instrumentations中的迭代方法的更新。只要不是isReadonly不是真值,则无论是get、set等方法还是keys、values等迭代器接口,都在内部进行了track或trigger,当然,get、has、size等方法 和 几个迭代器方法都属于访问操作,因此内部是使用track来收集依赖,而trigger发生在增、删、改操作里,当然,也要根据isReadonly和shallow有所区分,思路基本和baseHandlers一致。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 function get ( target: MapTypes, key: unknown , isReadonly = false , isShallow = false ) { target = (target as any )[ReactiveFlags .RAW ]; const rawTarget = toRaw (target); const rawKey = toRaw (key); if (!isReadonly) { if (key !== rawKey) { track (rawTarget, TrackOpTypes .GET , key); } track (rawTarget, TrackOpTypes .GET , rawKey); } const { has } = getProto (rawTarget); const wrap = isShallow ? toShallow : isReadonly ? toReadonly : toReactive; if (has.call (rawTarget, key)) { return wrap (target.get (key)); } else if (has.call (rawTarget, rawKey)) { return wrap (target.get (rawKey)); } else if (target !== rawTarget) { target.get (key); } } function has (this : CollectionTypes, key: unknown , isReadonly = false ): boolean { const target = (this as any )[ReactiveFlags .RAW ]; const rawTarget = toRaw (target); const rawKey = toRaw (key); if (!isReadonly) { if (key !== rawKey) { track (rawTarget, TrackOpTypes .HAS , key); } track (rawTarget, TrackOpTypes .HAS , rawKey); } return key === rawKey ? target.has (key) : target.has (key) || target.has (rawKey); } function size (target: IterableCollections, isReadonly = false ) { target = (target as any )[ReactiveFlags .RAW ]; !isReadonly && track (toRaw (target), TrackOpTypes .ITERATE , ITERATE_KEY ); return Reflect .get (target, "size" , target); } function add (this : SetTypes, value: unknown ) { value = toRaw (value); const target = toRaw (this ); const proto = getProto (target); const hadKey = proto.has .call (target, value); if (!hadKey) { target.add (value); trigger (target, TriggerOpTypes .ADD , value, value); } return this ; } function set (this : MapTypes, key: unknown , value: unknown ) { value = toRaw (value); const target = toRaw (this ); const { has, get } = getProto (target); let hadKey = has.call (target, key); if (!hadKey) { key = toRaw (key); hadKey = has.call (target, key); } else if (__DEV__) { checkIdentityKeys (target, has, key); } const oldValue = get.call (target, key); target.set (key, value); if (!hadKey) { trigger (target, TriggerOpTypes .ADD , key, value); } else if (hasChanged (value, oldValue)) { trigger (target, TriggerOpTypes .SET , key, value, oldValue); } return this ; } function deleteEntry (this : CollectionTypes, key: unknown ) { const target = toRaw (this ); const { has, get } = getProto (target); let hadKey = has.call (target, key); if (!hadKey) { key = toRaw (key); hadKey = has.call (target, key); } else if (__DEV__) { checkIdentityKeys (target, has, key); } const oldValue = get ? get.call (target, key) : undefined ; const result = target.delete (key); if (hadKey) { trigger (target, TriggerOpTypes .DELETE , key, undefined , oldValue); } return result; } function clear (this : IterableCollections ) { const target = toRaw (this ); const hadItems = target.size !== 0 ; const oldTarget = __DEV__ ? isMap (target) ? new Map (target) : new Set (target) : undefined ; const result = target.clear (); if (hadItems) { trigger (target, TriggerOpTypes .CLEAR , undefined , undefined , oldTarget); } return result; }
1.3 createIterableMethod 这里稍微提一下createIterableMethod,用于利用Map和Set本身的迭代器方法,并做了一点修改,在其中加入了track来收集依赖。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 function createIterableMethod ( method: string | symbol , isReadonly: boolean , isShallow: boolean ) { return function ( this : IterableCollections, ...args: unknown [] ): Iterable & Iterator { const target = (this as any )[ReactiveFlags .RAW ]; const rawTarget = toRaw (target); const targetIsMap = isMap (rawTarget); const isPair = method === "entries" || (method === Symbol .iterator && targetIsMap); const isKeyOnly = method === "keys" && targetIsMap; const innerIterator = target[method](...args); const wrap = isShallow ? toShallow : isReadonly ? toReadonly : toReactive; !isReadonly && track ( rawTarget, TrackOpTypes .ITERATE , isKeyOnly ? MAP_KEY_ITERATE_KEY : ITERATE_KEY ); return { next ( ) { const { value, done } = innerIterator.next (); return done ? { value, done } : { value : isPair ? [wrap (value[0 ]), wrap (value[1 ])] : wrap (value), done, }; }, [Symbol .iterator ]() { return this ; }, }; }; }
1.4 小结 分析完各个部分,可以看到,无论是baseHandlers还是collectionHandlers,思路都是一致的。
但是collectionHandlers只有get这一个代理程序,通过拦截到的key判断是否是Map和Set实例自带的增删改查的方法,从而返回预设好的hack版本的方法或原本的属性值,然后继续后续的操作。在hack版本的方法里进行track和trigger。